Fabcoin Core  0.16.2
P2P Digital Currency
field_impl.h
Go to the documentation of this file.
1 /**********************************************************************
2  * Copyright (c) 2013, 2014 Pieter Wuille *
3  * Distributed under the MIT software license, see the accompanying *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6 
7 #ifndef SECP256K1_FIELD_IMPL_H
8 #define SECP256K1_FIELD_IMPL_H
9 
10 #if defined HAVE_CONFIG_H
11 #include "libsecp256k1-config.h"
12 #endif
13 
14 #include "util.h"
15 
16 #if defined(USE_FIELD_10X26)
17 #include "field_10x26_impl.h"
18 #elif defined(USE_FIELD_5X52)
19 #include "field_5x52_impl.h"
20 #else
21 #error "Please select field implementation"
22 #endif
23 
24 SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
25  secp256k1_fe na;
26  secp256k1_fe_negate(&na, a, 1);
27  secp256k1_fe_add(&na, b);
28  return secp256k1_fe_normalizes_to_zero(&na);
29 }
30 
31 SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
32  secp256k1_fe na;
33  secp256k1_fe_negate(&na, a, 1);
34  secp256k1_fe_add(&na, b);
35  return secp256k1_fe_normalizes_to_zero_var(&na);
36 }
37 
38 static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
48  secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
49  int j;
50 
56  secp256k1_fe_sqr(&x2, a);
57  secp256k1_fe_mul(&x2, &x2, a);
58 
59  secp256k1_fe_sqr(&x3, &x2);
60  secp256k1_fe_mul(&x3, &x3, a);
61 
62  x6 = x3;
63  for (j=0; j<3; j++) {
64  secp256k1_fe_sqr(&x6, &x6);
65  }
66  secp256k1_fe_mul(&x6, &x6, &x3);
67 
68  x9 = x6;
69  for (j=0; j<3; j++) {
70  secp256k1_fe_sqr(&x9, &x9);
71  }
72  secp256k1_fe_mul(&x9, &x9, &x3);
73 
74  x11 = x9;
75  for (j=0; j<2; j++) {
76  secp256k1_fe_sqr(&x11, &x11);
77  }
78  secp256k1_fe_mul(&x11, &x11, &x2);
79 
80  x22 = x11;
81  for (j=0; j<11; j++) {
82  secp256k1_fe_sqr(&x22, &x22);
83  }
84  secp256k1_fe_mul(&x22, &x22, &x11);
85 
86  x44 = x22;
87  for (j=0; j<22; j++) {
88  secp256k1_fe_sqr(&x44, &x44);
89  }
90  secp256k1_fe_mul(&x44, &x44, &x22);
91 
92  x88 = x44;
93  for (j=0; j<44; j++) {
94  secp256k1_fe_sqr(&x88, &x88);
95  }
96  secp256k1_fe_mul(&x88, &x88, &x44);
97 
98  x176 = x88;
99  for (j=0; j<88; j++) {
100  secp256k1_fe_sqr(&x176, &x176);
101  }
102  secp256k1_fe_mul(&x176, &x176, &x88);
103 
104  x220 = x176;
105  for (j=0; j<44; j++) {
106  secp256k1_fe_sqr(&x220, &x220);
107  }
108  secp256k1_fe_mul(&x220, &x220, &x44);
109 
110  x223 = x220;
111  for (j=0; j<3; j++) {
112  secp256k1_fe_sqr(&x223, &x223);
113  }
114  secp256k1_fe_mul(&x223, &x223, &x3);
115 
116  /* The final result is then assembled using a sliding window over the blocks. */
117 
118  t1 = x223;
119  for (j=0; j<23; j++) {
120  secp256k1_fe_sqr(&t1, &t1);
121  }
122  secp256k1_fe_mul(&t1, &t1, &x22);
123  for (j=0; j<6; j++) {
124  secp256k1_fe_sqr(&t1, &t1);
125  }
126  secp256k1_fe_mul(&t1, &t1, &x2);
127  secp256k1_fe_sqr(&t1, &t1);
128  secp256k1_fe_sqr(r, &t1);
129 
130  /* Check that a square root was actually calculated */
131 
132  secp256k1_fe_sqr(&t1, r);
133  return secp256k1_fe_equal(&t1, a);
134 }
135 
136 static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) {
137  secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
138  int j;
139 
145  secp256k1_fe_sqr(&x2, a);
146  secp256k1_fe_mul(&x2, &x2, a);
147 
148  secp256k1_fe_sqr(&x3, &x2);
149  secp256k1_fe_mul(&x3, &x3, a);
150 
151  x6 = x3;
152  for (j=0; j<3; j++) {
153  secp256k1_fe_sqr(&x6, &x6);
154  }
155  secp256k1_fe_mul(&x6, &x6, &x3);
156 
157  x9 = x6;
158  for (j=0; j<3; j++) {
159  secp256k1_fe_sqr(&x9, &x9);
160  }
161  secp256k1_fe_mul(&x9, &x9, &x3);
162 
163  x11 = x9;
164  for (j=0; j<2; j++) {
165  secp256k1_fe_sqr(&x11, &x11);
166  }
167  secp256k1_fe_mul(&x11, &x11, &x2);
168 
169  x22 = x11;
170  for (j=0; j<11; j++) {
171  secp256k1_fe_sqr(&x22, &x22);
172  }
173  secp256k1_fe_mul(&x22, &x22, &x11);
174 
175  x44 = x22;
176  for (j=0; j<22; j++) {
177  secp256k1_fe_sqr(&x44, &x44);
178  }
179  secp256k1_fe_mul(&x44, &x44, &x22);
180 
181  x88 = x44;
182  for (j=0; j<44; j++) {
183  secp256k1_fe_sqr(&x88, &x88);
184  }
185  secp256k1_fe_mul(&x88, &x88, &x44);
186 
187  x176 = x88;
188  for (j=0; j<88; j++) {
189  secp256k1_fe_sqr(&x176, &x176);
190  }
191  secp256k1_fe_mul(&x176, &x176, &x88);
192 
193  x220 = x176;
194  for (j=0; j<44; j++) {
195  secp256k1_fe_sqr(&x220, &x220);
196  }
197  secp256k1_fe_mul(&x220, &x220, &x44);
198 
199  x223 = x220;
200  for (j=0; j<3; j++) {
201  secp256k1_fe_sqr(&x223, &x223);
202  }
203  secp256k1_fe_mul(&x223, &x223, &x3);
204 
205  /* The final result is then assembled using a sliding window over the blocks. */
206 
207  t1 = x223;
208  for (j=0; j<23; j++) {
209  secp256k1_fe_sqr(&t1, &t1);
210  }
211  secp256k1_fe_mul(&t1, &t1, &x22);
212  for (j=0; j<5; j++) {
213  secp256k1_fe_sqr(&t1, &t1);
214  }
215  secp256k1_fe_mul(&t1, &t1, a);
216  for (j=0; j<3; j++) {
217  secp256k1_fe_sqr(&t1, &t1);
218  }
219  secp256k1_fe_mul(&t1, &t1, &x2);
220  for (j=0; j<2; j++) {
221  secp256k1_fe_sqr(&t1, &t1);
222  }
223  secp256k1_fe_mul(r, a, &t1);
224 }
225 
226 static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
227 #if defined(USE_FIELD_INV_BUILTIN)
228  secp256k1_fe_inv(r, a);
229 #elif defined(USE_FIELD_INV_NUM)
230  secp256k1_num n, m;
231  static const secp256k1_fe negone = SECP256K1_FE_CONST(
232  0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
233  0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xFFFFFC2EUL
234  );
235  /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
236  static const unsigned char prime[32] = {
237  0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
238  0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
239  0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
240  0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
241  };
242  unsigned char b[32];
243  int res;
244  secp256k1_fe c = *a;
245  secp256k1_fe_normalize_var(&c);
246  secp256k1_fe_get_b32(b, &c);
247  secp256k1_num_set_bin(&n, b, 32);
248  secp256k1_num_set_bin(&m, prime, 32);
249  secp256k1_num_mod_inverse(&n, &n, &m);
250  secp256k1_num_get_bin(b, 32, &n);
251  res = secp256k1_fe_set_b32(r, b);
252  (void)res;
253  VERIFY_CHECK(res);
254  /* Verify the result is the (unique) valid inverse using non-GMP code. */
255  secp256k1_fe_mul(&c, &c, r);
256  secp256k1_fe_add(&c, &negone);
257  CHECK(secp256k1_fe_normalizes_to_zero_var(&c));
258 #else
259 #error "Please select field inverse implementation"
260 #endif
261 }
262 
263 static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len) {
264  secp256k1_fe u;
265  size_t i;
266  if (len < 1) {
267  return;
268  }
269 
270  VERIFY_CHECK((r + len <= a) || (a + len <= r));
271 
272  r[0] = a[0];
273 
274  i = 0;
275  while (++i < len) {
276  secp256k1_fe_mul(&r[i], &r[i - 1], &a[i]);
277  }
278 
279  secp256k1_fe_inv_var(&u, &r[--i]);
280 
281  while (i > 0) {
282  size_t j = i--;
283  secp256k1_fe_mul(&r[j], &r[i], &u);
284  secp256k1_fe_mul(&u, &u, &a[j]);
285  }
286 
287  r[0] = u;
288 }
289 
290 static int secp256k1_fe_is_quad_var(const secp256k1_fe *a) {
291 #ifndef USE_NUM_NONE
292  unsigned char b[32];
293  secp256k1_num n;
294  secp256k1_num m;
295  /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
296  static const unsigned char prime[32] = {
297  0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
298  0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
299  0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
300  0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
301  };
302 
303  secp256k1_fe c = *a;
304  secp256k1_fe_normalize_var(&c);
305  secp256k1_fe_get_b32(b, &c);
306  secp256k1_num_set_bin(&n, b, 32);
307  secp256k1_num_set_bin(&m, prime, 32);
308  return secp256k1_num_jacobi(&n, &m) >= 0;
309 #else
310  secp256k1_fe r;
311  return secp256k1_fe_sqrt(&r, a);
312 #endif
313 }
314 
315 #endif /* SECP256K1_FIELD_IMPL_H */
#define VERIFY_CHECK(cond)
Definition: util.h:67
#define CHECK(expr)
Definition: Utils.h:12
#define c(i)
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0)
Definition: field_10x26.h:38
#define a(i)
#define SECP256K1_INLINE
Definition: secp256k1.h:110
#define t1
#define b(i, j)