|
| GF2NPP (unsigned int t0, unsigned int t1, unsigned int t2, unsigned int t3, unsigned int t4) |
|
GF2NP * | Clone () const |
|
void | DEREncode (BufferedTransformation &bt) const |
|
| GF2NP (const PolynomialMod2 &modulus) |
|
void | DEREncodeElement (BufferedTransformation &out, const Element &a) const |
|
void | BERDecodeElement (BufferedTransformation &in, Element &a) const |
|
bool | Equal (const Element &a, const Element &b) const |
| Compare two elements for equality. More...
|
|
bool | IsUnit (const Element &a) const |
| Determines whether an element is a unit in the group. More...
|
|
unsigned int | MaxElementBitLength () const |
|
unsigned int | MaxElementByteLength () const |
|
Element | SquareRoot (const Element &a) const |
|
Element | HalfTrace (const Element &a) const |
|
Element | SolveQuadraticEquation (const Element &a) const |
|
| QuotientRing (const EuclideanDomain &domain, const Element &modulus) |
|
const EuclideanDomain & | GetDomain () const |
|
const Element & | GetModulus () const |
|
bool | Equal (const Element &a, const Element &b) const |
| Compare two elements for equality. More...
|
|
const Element & | Identity () const |
| Provides the Identity element. More...
|
|
const Element & | Add (const Element &a, const Element &b) const |
| Adds elements in the group. More...
|
|
Element & | Accumulate (Element &a, const Element &b) const |
| TODO. More...
|
|
const Element & | Inverse (const Element &a) const |
| Inverts the element in the group. More...
|
|
const Element & | Subtract (const Element &a, const Element &b) const |
| Subtracts elements in the group. More...
|
|
Element & | Reduce (Element &a, const Element &b) const |
| Reduces an element in the congruence class. More...
|
|
const Element & | Double (const Element &a) const |
| Doubles an element in the group. More...
|
|
bool | IsUnit (const Element &a) const |
| Determines whether an element is a unit in the group. More...
|
|
const Element & | MultiplicativeIdentity () const |
| Retrieves the multiplicative identity. More...
|
|
const Element & | Multiply (const Element &a, const Element &b) const |
| Multiplies elements in the group. More...
|
|
const Element & | Square (const Element &a) const |
| Square an element in the group. More...
|
|
const Element & | MultiplicativeInverse (const Element &a) const |
| Calculate the multiplicative inverse of an element in the group. More...
|
|
bool | operator== (const QuotientRing< EuclideanDomainOf< PolynomialMod2 > > &rhs) const |
|
| AbstractRing () |
| Construct an AbstractRing. More...
|
|
| AbstractRing (const AbstractRing &source) |
| Copy construct an AbstractRing. More...
|
|
AbstractRing & | operator= (const AbstractRing &source) |
| Assign an AbstractRing. More...
|
|
virtual const Element & | Divide (const Element &a, const Element &b) const |
| Divides elements in the group. More...
|
|
virtual Element | Exponentiate (const Element &a, const Integer &e) const |
| Raises a base to an exponent in the group. More...
|
|
virtual Element | CascadeExponentiate (const Element &x, const Integer &e1, const Element &y, const Integer &e2) const |
| TODO. More...
|
|
virtual void | SimultaneousExponentiate (Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const |
| Exponentiates a base to multiple exponents in the Ring. More...
|
|
virtual const AbstractGroup< EuclideanDomainOf< PolynomialMod2 >::Element > & | MultiplicativeGroup () const |
| Retrieves the multiplicative group. More...
|
|
virtual | ~AbstractGroup () |
|
virtual bool | InversionIsFast () const |
| Determine if inversion is fast. More...
|
|
virtual Element | ScalarMultiply (const Element &a, const Integer &e) const |
| Performs a scalar multiplication. More...
|
|
virtual Element | CascadeScalarMultiply (const Element &x, const Integer &e1, const Element &y, const Integer &e2) const |
| TODO. More...
|
|
virtual void | SimultaneousMultiply (Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const |
| Multiplies a base to multiple exponents in a group. More...
|
|
GF(2^n) with Pentanomial Basis.
Definition at line 350 of file gf2n.h.