Fabcoin Core  0.16.2
P2P Digital Currency
ecmult_const_impl.h
Go to the documentation of this file.
1 /**********************************************************************
2  * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
3  * Distributed under the MIT software license, see the accompanying *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6 
7 #ifndef SECP256K1_ECMULT_CONST_IMPL_H
8 #define SECP256K1_ECMULT_CONST_IMPL_H
9 
10 #include "scalar.h"
11 #include "group.h"
12 #include "ecmult_const.h"
13 #include "ecmult_impl.h"
14 
15 #ifdef USE_ENDOMORPHISM
16  #define WNAF_BITS 128
17 #else
18  #define WNAF_BITS 256
19 #endif
20 #define WNAF_SIZE(w) ((WNAF_BITS + (w) - 1) / (w))
21 
22 /* This is like `ECMULT_TABLE_GET_GE` but is constant time */
23 #define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
24  int m; \
25  int abs_n = (n) * (((n) > 0) * 2 - 1); \
26  int idx_n = abs_n / 2; \
27  secp256k1_fe neg_y; \
28  VERIFY_CHECK(((n) & 1) == 1); \
29  VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
30  VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
31  VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \
32  VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \
33  for (m = 0; m < ECMULT_TABLE_SIZE(w); m++) { \
34  /* This loop is used to avoid secret data in array indices. See
35  * the comment in ecmult_gen_impl.h for rationale. */ \
36  secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \
37  secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \
38  } \
39  (r)->infinity = 0; \
40  secp256k1_fe_negate(&neg_y, &(r)->y, 1); \
41  secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \
42 } while(0)
43 
44 
58 static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) {
59  int global_sign;
60  int skew = 0;
61  int word = 0;
62 
63  /* 1 2 3 */
64  int u_last;
65  int u;
66 
67  int flip;
68  int bit;
69  secp256k1_scalar neg_s;
70  int not_neg_one;
71  /* Note that we cannot handle even numbers by negating them to be odd, as is
72  * done in other implementations, since if our scalars were specified to have
73  * width < 256 for performance reasons, their negations would have width 256
74  * and we'd lose any performance benefit. Instead, we use a technique from
75  * Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even)
76  * or 2 (for odd) to the number we are encoding, returning a skew value indicating
77  * this, and having the caller compensate after doing the multiplication. */
78 
79  /* Negative numbers will be negated to keep their bit representation below the maximum width */
80  flip = secp256k1_scalar_is_high(&s);
81  /* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */
82  bit = flip ^ !secp256k1_scalar_is_even(&s);
83  /* We check for negative one, since adding 2 to it will cause an overflow */
84  secp256k1_scalar_negate(&neg_s, &s);
85  not_neg_one = !secp256k1_scalar_is_one(&neg_s);
86  secp256k1_scalar_cadd_bit(&s, bit, not_neg_one);
87  /* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects
88  * that we added two to it and flipped it. In fact for -1 these operations are
89  * identical. We only flipped, but since skewing is required (in the sense that
90  * the skew must be 1 or 2, never zero) and flipping is not, we need to change
91  * our flags to claim that we only skewed. */
92  global_sign = secp256k1_scalar_cond_negate(&s, flip);
93  global_sign *= not_neg_one * 2 - 1;
94  skew = 1 << bit;
95 
96  /* 4 */
97  u_last = secp256k1_scalar_shr_int(&s, w);
98  while (word * w < WNAF_BITS) {
99  int sign;
100  int even;
101 
102  /* 4.1 4.4 */
103  u = secp256k1_scalar_shr_int(&s, w);
104  /* 4.2 */
105  even = ((u & 1) == 0);
106  sign = 2 * (u_last > 0) - 1;
107  u += sign * even;
108  u_last -= sign * even * (1 << w);
109 
110  /* 4.3, adapted for global sign change */
111  wnaf[word++] = u_last * global_sign;
112 
113  u_last = u;
114  }
115  wnaf[word] = u * global_sign;
116 
117  VERIFY_CHECK(secp256k1_scalar_is_zero(&s));
118  VERIFY_CHECK(word == WNAF_SIZE(w));
119  return skew;
120 }
121 
122 
123 static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) {
125  secp256k1_ge tmpa;
126  secp256k1_fe Z;
127 
128  int skew_1;
129  int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
130 #ifdef USE_ENDOMORPHISM
132  int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)];
133  int skew_lam;
134  secp256k1_scalar q_1, q_lam;
135 #endif
136 
137  int i;
138  secp256k1_scalar sc = *scalar;
139 
140  /* build wnaf representation for q. */
141 #ifdef USE_ENDOMORPHISM
142  /* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
143  secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc);
144  skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1);
145  skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1);
146 #else
147  skew_1 = secp256k1_wnaf_const(wnaf_1, sc, WINDOW_A - 1);
148 #endif
149 
150  /* Calculate odd multiples of a.
151  * All multiples are brought to the same Z 'denominator', which is stored
152  * in Z. Due to secp256k1' isomorphism we can do all operations pretending
153  * that the Z coordinate was 1, use affine addition formulae, and correct
154  * the Z coordinate of the result once at the end.
155  */
156  secp256k1_gej_set_ge(r, a);
157  secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r);
158  for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
159  secp256k1_fe_normalize_weak(&pre_a[i].y);
160  }
161 #ifdef USE_ENDOMORPHISM
162  for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
163  secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
164  }
165 #endif
166 
167  /* first loop iteration (separated out so we can directly set r, rather
168  * than having it start at infinity, get doubled several times, then have
169  * its new value added to it) */
170  i = wnaf_1[WNAF_SIZE(WINDOW_A - 1)];
171  VERIFY_CHECK(i != 0);
172  ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
173  secp256k1_gej_set_ge(r, &tmpa);
174 #ifdef USE_ENDOMORPHISM
175  i = wnaf_lam[WNAF_SIZE(WINDOW_A - 1)];
176  VERIFY_CHECK(i != 0);
177  ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
178  secp256k1_gej_add_ge(r, r, &tmpa);
179 #endif
180  /* remaining loop iterations */
181  for (i = WNAF_SIZE(WINDOW_A - 1) - 1; i >= 0; i--) {
182  int n;
183  int j;
184  for (j = 0; j < WINDOW_A - 1; ++j) {
185  secp256k1_gej_double_nonzero(r, r, NULL);
186  }
187 
188  n = wnaf_1[i];
189  ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
190  VERIFY_CHECK(n != 0);
191  secp256k1_gej_add_ge(r, r, &tmpa);
192 #ifdef USE_ENDOMORPHISM
193  n = wnaf_lam[i];
194  ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
195  VERIFY_CHECK(n != 0);
196  secp256k1_gej_add_ge(r, r, &tmpa);
197 #endif
198  }
199 
200  secp256k1_fe_mul(&r->z, &r->z, &Z);
201 
202  {
203  /* Correct for wNAF skew */
204  secp256k1_ge correction = *a;
205  secp256k1_ge_storage correction_1_stor;
206 #ifdef USE_ENDOMORPHISM
207  secp256k1_ge_storage correction_lam_stor;
208 #endif
209  secp256k1_ge_storage a2_stor;
210  secp256k1_gej tmpj;
211  secp256k1_gej_set_ge(&tmpj, &correction);
212  secp256k1_gej_double_var(&tmpj, &tmpj, NULL);
213  secp256k1_ge_set_gej(&correction, &tmpj);
214  secp256k1_ge_to_storage(&correction_1_stor, a);
215 #ifdef USE_ENDOMORPHISM
216  secp256k1_ge_to_storage(&correction_lam_stor, a);
217 #endif
218  secp256k1_ge_to_storage(&a2_stor, &correction);
219 
220  /* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */
221  secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2);
222 #ifdef USE_ENDOMORPHISM
223  secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2);
224 #endif
225 
226  /* Apply the correction */
227  secp256k1_ge_from_storage(&correction, &correction_1_stor);
228  secp256k1_ge_neg(&correction, &correction);
229  secp256k1_gej_add_ge(r, r, &correction);
230 
231 #ifdef USE_ENDOMORPHISM
232  secp256k1_ge_from_storage(&correction, &correction_lam_stor);
233  secp256k1_ge_neg(&correction, &correction);
234  secp256k1_ge_mul_lambda(&correction, &correction);
235  secp256k1_gej_add_ge(r, r, &correction);
236 #endif
237  }
238 }
239 
240 #endif /* SECP256K1_ECMULT_CONST_IMPL_H */
#define VERIFY_CHECK(cond)
Definition: util.h:67
#define ECMULT_TABLE_SIZE(w)
The number of entries a table with precomputed multiples needs to have.
Definition: ecmult_impl.h:45
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:24
#define a(i)
#define WNAF_SIZE(w)
#define ECMULT_CONST_TABLE_GET_GE(r, pre, n, w)
A group element of the secp256k1 curve, in affine coordinates.
Definition: group.h:14
#define WNAF_BITS
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
#define WINDOW_A
Definition: ecmult_impl.h:32
Signature sign(Secret const &_k, h256 const &_hash)
Returns siganture of message hash.
Definition: Common.cpp:233
secp256k1_fe z
Definition: group.h:27
word32 word
Definition: config.h:308