Fabcoin Core  0.16.2
P2P Digital Currency
merkle.cpp
Go to the documentation of this file.
1 // Copyright (c) 2015-2017 The Bitcoin Core developers
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 
5 #include <consensus/merkle.h>
6 #include <hash.h>
7 #include <utilstrencodings.h>
8 
9 /* WARNING! If you're reading this because you're learning about crypto
10  and/or designing a new system that will use merkle trees, keep in mind
11  that the following merkle tree algorithm has a serious flaw related to
12  duplicate txids, resulting in a vulnerability (CVE-2012-2459).
13 
14  The reason is that if the number of hashes in the list at a given time
15  is odd, the last one is duplicated before computing the next level (which
16  is unusual in Merkle trees). This results in certain sequences of
17  transactions leading to the same merkle root. For example, these two
18  trees:
19 
20  A A
21  / \ / \
22  B C B C
23  / \ | / \ / \
24  D E F D E F F
25  / \ / \ / \ / \ / \ / \ / \
26  1 2 3 4 5 6 1 2 3 4 5 6 5 6
27 
28  for transaction lists [1,2,3,4,5,6] and [1,2,3,4,5,6,5,6] (where 5 and
29  6 are repeated) result in the same root hash A (because the hash of both
30  of (F) and (F,F) is C).
31 
32  The vulnerability results from being able to send a block with such a
33  transaction list, with the same merkle root, and the same block hash as
34  the original without duplication, resulting in failed validation. If the
35  receiving node proceeds to mark that block as permanently invalid
36  however, it will fail to accept further unmodified (and thus potentially
37  valid) versions of the same block. We defend against this by detecting
38  the case where we would hash two identical hashes at the end of the list
39  together, and treating that identically to the block having an invalid
40  merkle root. Assuming no double-SHA256 collisions, this will detect all
41  known ways of changing the transactions without affecting the merkle
42  root.
43 */
44 
45 /* This implements a constant-space merkle root/path calculator, limited to 2^32 leaves. */
46 static void MerkleComputation(const std::vector<uint256>& leaves, uint256* proot, bool* pmutated, uint32_t branchpos, std::vector<uint256>* pbranch) {
47  if (pbranch) pbranch->clear();
48  if (leaves.size() == 0) {
49  if (pmutated) *pmutated = false;
50  if (proot) *proot = uint256();
51  return;
52  }
53  bool mutated = false;
54  // count is the number of leaves processed so far.
55  uint32_t count = 0;
56  // inner is an array of eagerly computed subtree hashes, indexed by tree
57  // level (0 being the leaves).
58  // For example, when count is 25 (11001 in binary), inner[4] is the hash of
59  // the first 16 leaves, inner[3] of the next 8 leaves, and inner[0] equal to
60  // the last leaf. The other inner entries are undefined.
61  uint256 inner[32];
62  // Which position in inner is a hash that depends on the matching leaf.
63  int matchlevel = -1;
64  // First process all leaves into 'inner' values.
65  while (count < leaves.size()) {
66  uint256 h = leaves[count];
67  bool matchh = count == branchpos;
68  count++;
69  int level;
70  // For each of the lower bits in count that are 0, do 1 step. Each
71  // corresponds to an inner value that existed before processing the
72  // current leaf, and each needs a hash to combine it.
73  for (level = 0; !(count & (((uint32_t)1) << level)); level++) {
74  if (pbranch) {
75  if (matchh) {
76  pbranch->push_back(inner[level]);
77  } else if (matchlevel == level) {
78  pbranch->push_back(h);
79  matchh = true;
80  }
81  }
82  mutated |= (inner[level] == h);
83  CHash256().Write(inner[level].begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
84  }
85  // Store the resulting hash at inner position level.
86  inner[level] = h;
87  if (matchh) {
88  matchlevel = level;
89  }
90  }
91  // Do a final 'sweep' over the rightmost branch of the tree to process
92  // odd levels, and reduce everything to a single top value.
93  // Level is the level (counted from the bottom) up to which we've sweeped.
94  int level = 0;
95  // As long as bit number level in count is zero, skip it. It means there
96  // is nothing left at this level.
97  while (!(count & (((uint32_t)1) << level))) {
98  level++;
99  }
100  uint256 h = inner[level];
101  bool matchh = matchlevel == level;
102  while (count != (((uint32_t)1) << level)) {
103  // If we reach this point, h is an inner value that is not the top.
104  // We combine it with itself (Fabcoin's special rule for odd levels in
105  // the tree) to produce a higher level one.
106  if (pbranch && matchh) {
107  pbranch->push_back(h);
108  }
109  CHash256().Write(h.begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
110  // Increment count to the value it would have if two entries at this
111  // level had existed.
112  count += (((uint32_t)1) << level);
113  level++;
114  // And propagate the result upwards accordingly.
115  while (!(count & (((uint32_t)1) << level))) {
116  if (pbranch) {
117  if (matchh) {
118  pbranch->push_back(inner[level]);
119  } else if (matchlevel == level) {
120  pbranch->push_back(h);
121  matchh = true;
122  }
123  }
124  CHash256().Write(inner[level].begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
125  level++;
126  }
127  }
128  // Return result.
129  if (pmutated) *pmutated = mutated;
130  if (proot) *proot = h;
131 }
132 
133 uint256 ComputeMerkleRoot(const std::vector<uint256>& leaves, bool* mutated) {
134  uint256 hash;
135  MerkleComputation(leaves, &hash, mutated, -1, nullptr);
136  return hash;
137 }
138 
139 std::vector<uint256> ComputeMerkleBranch(const std::vector<uint256>& leaves, uint32_t position) {
140  std::vector<uint256> ret;
141  MerkleComputation(leaves, nullptr, nullptr, position, &ret);
142  return ret;
143 }
144 
145 uint256 ComputeMerkleRootFromBranch(const uint256& leaf, const std::vector<uint256>& vMerkleBranch, uint32_t nIndex) {
146  uint256 hash = leaf;
147  for (std::vector<uint256>::const_iterator it = vMerkleBranch.begin(); it != vMerkleBranch.end(); ++it) {
148  if (nIndex & 1) {
149  hash = Hash(BEGIN(*it), END(*it), BEGIN(hash), END(hash));
150  } else {
151  hash = Hash(BEGIN(hash), END(hash), BEGIN(*it), END(*it));
152  }
153  nIndex >>= 1;
154  }
155  return hash;
156 }
157 
158 uint256 BlockMerkleRoot(const CBlock& block, bool* mutated)
159 {
160  std::vector<uint256> leaves;
161  leaves.resize(block.vtx.size());
162  for (size_t s = 0; s < block.vtx.size(); s++) {
163  leaves[s] = block.vtx[s]->GetHash();
164  }
165  return ComputeMerkleRoot(leaves, mutated);
166 }
167 
168 uint256 BlockWitnessMerkleRoot(const CBlock& block, bool* mutated)
169 {
170  std::vector<uint256> leaves;
171  leaves.resize(block.vtx.size());
172  leaves[0].SetNull(); // The witness hash of the coinbase is 0.
173  for (size_t s = 1; s < block.vtx.size(); s++) {
174  leaves[s] = block.vtx[s]->GetWitnessHash();
175  }
176  return ComputeMerkleRoot(leaves, mutated);
177 }
178 
179 std::vector<uint256> BlockMerkleBranch(const CBlock& block, uint32_t position)
180 {
181  std::vector<uint256> leaves;
182  leaves.resize(block.vtx.size());
183  for (size_t s = 0; s < block.vtx.size(); s++) {
184  leaves[s] = block.vtx[s]->GetHash();
185  }
186  return ComputeMerkleBranch(leaves, position);
187 }
void SetNull()
Definition: uint256.h:46
Definition: block.h:155
CHash256 & Write(const unsigned char *data, size_t len)
Definition: hash.h:33
#define h(i)
Definition: sha.cpp:736
std::vector< uint256 > BlockMerkleBranch(const CBlock &block, uint32_t position)
Definition: merkle.cpp:179
size_t count
Definition: ExecStats.cpp:37
std::vector< uint256 > ComputeMerkleBranch(const std::vector< uint256 > &leaves, uint32_t position)
Definition: merkle.cpp:139
uint256 ComputeMerkleRootFromBranch(const uint256 &leaf, const std::vector< uint256 > &vMerkleBranch, uint32_t nIndex)
Definition: merkle.cpp:145
uint256 BlockWitnessMerkleRoot(const CBlock &block, bool *mutated)
Definition: merkle.cpp:168
A hasher class for Fabcoin&#39;s 256-bit hash (double SHA-256).
Definition: hash.h:21
uint256 ComputeMerkleRoot(const std::vector< uint256 > &leaves, bool *mutated)
Definition: merkle.cpp:133
unsigned char * begin()
Definition: uint256.h:65
#define BEGIN(a)
Utilities for converting data from/to strings.
#define END(a)
uint256 BlockMerkleRoot(const CBlock &block, bool *mutated)
Definition: merkle.cpp:158
uint256 Hash(const T1 pbegin, const T1 pend)
Compute the 256-bit hash of an object.
Definition: hash.h:70
256-bit opaque blob.
Definition: uint256.h:132
std::vector< CTransactionRef > vtx
Definition: block.h:159