Fabcoin Core  0.16.2
P2P Digital Currency
scalar_8x32_impl.h
Go to the documentation of this file.
1 /**********************************************************************
2  * Copyright (c) 2014 Pieter Wuille *
3  * Distributed under the MIT software license, see the accompanying *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6 
7 #ifndef SECP256K1_SCALAR_REPR_IMPL_H
8 #define SECP256K1_SCALAR_REPR_IMPL_H
9 
10 /* Limbs of the secp256k1 order. */
11 #define SECP256K1_N_0 ((uint32_t)0xD0364141UL)
12 #define SECP256K1_N_1 ((uint32_t)0xBFD25E8CUL)
13 #define SECP256K1_N_2 ((uint32_t)0xAF48A03BUL)
14 #define SECP256K1_N_3 ((uint32_t)0xBAAEDCE6UL)
15 #define SECP256K1_N_4 ((uint32_t)0xFFFFFFFEUL)
16 #define SECP256K1_N_5 ((uint32_t)0xFFFFFFFFUL)
17 #define SECP256K1_N_6 ((uint32_t)0xFFFFFFFFUL)
18 #define SECP256K1_N_7 ((uint32_t)0xFFFFFFFFUL)
19 
20 /* Limbs of 2^256 minus the secp256k1 order. */
21 #define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
22 #define SECP256K1_N_C_1 (~SECP256K1_N_1)
23 #define SECP256K1_N_C_2 (~SECP256K1_N_2)
24 #define SECP256K1_N_C_3 (~SECP256K1_N_3)
25 #define SECP256K1_N_C_4 (1)
26 
27 /* Limbs of half the secp256k1 order. */
28 #define SECP256K1_N_H_0 ((uint32_t)0x681B20A0UL)
29 #define SECP256K1_N_H_1 ((uint32_t)0xDFE92F46UL)
30 #define SECP256K1_N_H_2 ((uint32_t)0x57A4501DUL)
31 #define SECP256K1_N_H_3 ((uint32_t)0x5D576E73UL)
32 #define SECP256K1_N_H_4 ((uint32_t)0xFFFFFFFFUL)
33 #define SECP256K1_N_H_5 ((uint32_t)0xFFFFFFFFUL)
34 #define SECP256K1_N_H_6 ((uint32_t)0xFFFFFFFFUL)
35 #define SECP256K1_N_H_7 ((uint32_t)0x7FFFFFFFUL)
36 
37 SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) {
38  r->d[0] = 0;
39  r->d[1] = 0;
40  r->d[2] = 0;
41  r->d[3] = 0;
42  r->d[4] = 0;
43  r->d[5] = 0;
44  r->d[6] = 0;
45  r->d[7] = 0;
46 }
47 
48 SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
49  r->d[0] = v;
50  r->d[1] = 0;
51  r->d[2] = 0;
52  r->d[3] = 0;
53  r->d[4] = 0;
54  r->d[5] = 0;
55  r->d[6] = 0;
56  r->d[7] = 0;
57 }
58 
59 SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
60  VERIFY_CHECK((offset + count - 1) >> 5 == offset >> 5);
61  return (a->d[offset >> 5] >> (offset & 0x1F)) & ((1 << count) - 1);
62 }
63 
64 SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
65  VERIFY_CHECK(count < 32);
66  VERIFY_CHECK(offset + count <= 256);
67  if ((offset + count - 1) >> 5 == offset >> 5) {
68  return secp256k1_scalar_get_bits(a, offset, count);
69  } else {
70  VERIFY_CHECK((offset >> 5) + 1 < 8);
71  return ((a->d[offset >> 5] >> (offset & 0x1F)) | (a->d[(offset >> 5) + 1] << (32 - (offset & 0x1F)))) & ((((uint32_t)1) << count) - 1);
72  }
73 }
74 
75 SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) {
76  int yes = 0;
77  int no = 0;
78  no |= (a->d[7] < SECP256K1_N_7); /* No need for a > check. */
79  no |= (a->d[6] < SECP256K1_N_6); /* No need for a > check. */
80  no |= (a->d[5] < SECP256K1_N_5); /* No need for a > check. */
81  no |= (a->d[4] < SECP256K1_N_4);
82  yes |= (a->d[4] > SECP256K1_N_4) & ~no;
83  no |= (a->d[3] < SECP256K1_N_3) & ~yes;
84  yes |= (a->d[3] > SECP256K1_N_3) & ~no;
85  no |= (a->d[2] < SECP256K1_N_2) & ~yes;
86  yes |= (a->d[2] > SECP256K1_N_2) & ~no;
87  no |= (a->d[1] < SECP256K1_N_1) & ~yes;
88  yes |= (a->d[1] > SECP256K1_N_1) & ~no;
89  yes |= (a->d[0] >= SECP256K1_N_0) & ~no;
90  return yes;
91 }
92 
93 SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_t overflow) {
94  uint64_t t;
95  VERIFY_CHECK(overflow <= 1);
96  t = (uint64_t)r->d[0] + overflow * SECP256K1_N_C_0;
97  r->d[0] = t & 0xFFFFFFFFUL; t >>= 32;
98  t += (uint64_t)r->d[1] + overflow * SECP256K1_N_C_1;
99  r->d[1] = t & 0xFFFFFFFFUL; t >>= 32;
100  t += (uint64_t)r->d[2] + overflow * SECP256K1_N_C_2;
101  r->d[2] = t & 0xFFFFFFFFUL; t >>= 32;
102  t += (uint64_t)r->d[3] + overflow * SECP256K1_N_C_3;
103  r->d[3] = t & 0xFFFFFFFFUL; t >>= 32;
104  t += (uint64_t)r->d[4] + overflow * SECP256K1_N_C_4;
105  r->d[4] = t & 0xFFFFFFFFUL; t >>= 32;
106  t += (uint64_t)r->d[5];
107  r->d[5] = t & 0xFFFFFFFFUL; t >>= 32;
108  t += (uint64_t)r->d[6];
109  r->d[6] = t & 0xFFFFFFFFUL; t >>= 32;
110  t += (uint64_t)r->d[7];
111  r->d[7] = t & 0xFFFFFFFFUL;
112  return overflow;
113 }
114 
115 static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
116  int overflow;
117  uint64_t t = (uint64_t)a->d[0] + b->d[0];
118  r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
119  t += (uint64_t)a->d[1] + b->d[1];
120  r->d[1] = t & 0xFFFFFFFFULL; t >>= 32;
121  t += (uint64_t)a->d[2] + b->d[2];
122  r->d[2] = t & 0xFFFFFFFFULL; t >>= 32;
123  t += (uint64_t)a->d[3] + b->d[3];
124  r->d[3] = t & 0xFFFFFFFFULL; t >>= 32;
125  t += (uint64_t)a->d[4] + b->d[4];
126  r->d[4] = t & 0xFFFFFFFFULL; t >>= 32;
127  t += (uint64_t)a->d[5] + b->d[5];
128  r->d[5] = t & 0xFFFFFFFFULL; t >>= 32;
129  t += (uint64_t)a->d[6] + b->d[6];
130  r->d[6] = t & 0xFFFFFFFFULL; t >>= 32;
131  t += (uint64_t)a->d[7] + b->d[7];
132  r->d[7] = t & 0xFFFFFFFFULL; t >>= 32;
133  overflow = t + secp256k1_scalar_check_overflow(r);
134  VERIFY_CHECK(overflow == 0 || overflow == 1);
135  secp256k1_scalar_reduce(r, overflow);
136  return overflow;
137 }
138 
139 static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
140  uint64_t t;
141  VERIFY_CHECK(bit < 256);
142  bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 5) > 7 makes this a noop */
143  t = (uint64_t)r->d[0] + (((uint32_t)((bit >> 5) == 0)) << (bit & 0x1F));
144  r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
145  t += (uint64_t)r->d[1] + (((uint32_t)((bit >> 5) == 1)) << (bit & 0x1F));
146  r->d[1] = t & 0xFFFFFFFFULL; t >>= 32;
147  t += (uint64_t)r->d[2] + (((uint32_t)((bit >> 5) == 2)) << (bit & 0x1F));
148  r->d[2] = t & 0xFFFFFFFFULL; t >>= 32;
149  t += (uint64_t)r->d[3] + (((uint32_t)((bit >> 5) == 3)) << (bit & 0x1F));
150  r->d[3] = t & 0xFFFFFFFFULL; t >>= 32;
151  t += (uint64_t)r->d[4] + (((uint32_t)((bit >> 5) == 4)) << (bit & 0x1F));
152  r->d[4] = t & 0xFFFFFFFFULL; t >>= 32;
153  t += (uint64_t)r->d[5] + (((uint32_t)((bit >> 5) == 5)) << (bit & 0x1F));
154  r->d[5] = t & 0xFFFFFFFFULL; t >>= 32;
155  t += (uint64_t)r->d[6] + (((uint32_t)((bit >> 5) == 6)) << (bit & 0x1F));
156  r->d[6] = t & 0xFFFFFFFFULL; t >>= 32;
157  t += (uint64_t)r->d[7] + (((uint32_t)((bit >> 5) == 7)) << (bit & 0x1F));
158  r->d[7] = t & 0xFFFFFFFFULL;
159 #ifdef VERIFY
160  VERIFY_CHECK((t >> 32) == 0);
161  VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
162 #endif
163 }
164 
165 static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
166  int over;
167  r->d[0] = (uint32_t)b32[31] | (uint32_t)b32[30] << 8 | (uint32_t)b32[29] << 16 | (uint32_t)b32[28] << 24;
168  r->d[1] = (uint32_t)b32[27] | (uint32_t)b32[26] << 8 | (uint32_t)b32[25] << 16 | (uint32_t)b32[24] << 24;
169  r->d[2] = (uint32_t)b32[23] | (uint32_t)b32[22] << 8 | (uint32_t)b32[21] << 16 | (uint32_t)b32[20] << 24;
170  r->d[3] = (uint32_t)b32[19] | (uint32_t)b32[18] << 8 | (uint32_t)b32[17] << 16 | (uint32_t)b32[16] << 24;
171  r->d[4] = (uint32_t)b32[15] | (uint32_t)b32[14] << 8 | (uint32_t)b32[13] << 16 | (uint32_t)b32[12] << 24;
172  r->d[5] = (uint32_t)b32[11] | (uint32_t)b32[10] << 8 | (uint32_t)b32[9] << 16 | (uint32_t)b32[8] << 24;
173  r->d[6] = (uint32_t)b32[7] | (uint32_t)b32[6] << 8 | (uint32_t)b32[5] << 16 | (uint32_t)b32[4] << 24;
174  r->d[7] = (uint32_t)b32[3] | (uint32_t)b32[2] << 8 | (uint32_t)b32[1] << 16 | (uint32_t)b32[0] << 24;
175  over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
176  if (overflow) {
177  *overflow = over;
178  }
179 }
180 
181 static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
182  bin[0] = a->d[7] >> 24; bin[1] = a->d[7] >> 16; bin[2] = a->d[7] >> 8; bin[3] = a->d[7];
183  bin[4] = a->d[6] >> 24; bin[5] = a->d[6] >> 16; bin[6] = a->d[6] >> 8; bin[7] = a->d[6];
184  bin[8] = a->d[5] >> 24; bin[9] = a->d[5] >> 16; bin[10] = a->d[5] >> 8; bin[11] = a->d[5];
185  bin[12] = a->d[4] >> 24; bin[13] = a->d[4] >> 16; bin[14] = a->d[4] >> 8; bin[15] = a->d[4];
186  bin[16] = a->d[3] >> 24; bin[17] = a->d[3] >> 16; bin[18] = a->d[3] >> 8; bin[19] = a->d[3];
187  bin[20] = a->d[2] >> 24; bin[21] = a->d[2] >> 16; bin[22] = a->d[2] >> 8; bin[23] = a->d[2];
188  bin[24] = a->d[1] >> 24; bin[25] = a->d[1] >> 16; bin[26] = a->d[1] >> 8; bin[27] = a->d[1];
189  bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
190 }
191 
192 SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
193  return (a->d[0] | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
194 }
195 
196 static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
197  uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(a) == 0);
198  uint64_t t = (uint64_t)(~a->d[0]) + SECP256K1_N_0 + 1;
199  r->d[0] = t & nonzero; t >>= 32;
200  t += (uint64_t)(~a->d[1]) + SECP256K1_N_1;
201  r->d[1] = t & nonzero; t >>= 32;
202  t += (uint64_t)(~a->d[2]) + SECP256K1_N_2;
203  r->d[2] = t & nonzero; t >>= 32;
204  t += (uint64_t)(~a->d[3]) + SECP256K1_N_3;
205  r->d[3] = t & nonzero; t >>= 32;
206  t += (uint64_t)(~a->d[4]) + SECP256K1_N_4;
207  r->d[4] = t & nonzero; t >>= 32;
208  t += (uint64_t)(~a->d[5]) + SECP256K1_N_5;
209  r->d[5] = t & nonzero; t >>= 32;
210  t += (uint64_t)(~a->d[6]) + SECP256K1_N_6;
211  r->d[6] = t & nonzero; t >>= 32;
212  t += (uint64_t)(~a->d[7]) + SECP256K1_N_7;
213  r->d[7] = t & nonzero;
214 }
215 
216 SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
217  return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
218 }
219 
220 static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
221  int yes = 0;
222  int no = 0;
223  no |= (a->d[7] < SECP256K1_N_H_7);
224  yes |= (a->d[7] > SECP256K1_N_H_7) & ~no;
225  no |= (a->d[6] < SECP256K1_N_H_6) & ~yes; /* No need for a > check. */
226  no |= (a->d[5] < SECP256K1_N_H_5) & ~yes; /* No need for a > check. */
227  no |= (a->d[4] < SECP256K1_N_H_4) & ~yes; /* No need for a > check. */
228  no |= (a->d[3] < SECP256K1_N_H_3) & ~yes;
229  yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
230  no |= (a->d[2] < SECP256K1_N_H_2) & ~yes;
231  yes |= (a->d[2] > SECP256K1_N_H_2) & ~no;
232  no |= (a->d[1] < SECP256K1_N_H_1) & ~yes;
233  yes |= (a->d[1] > SECP256K1_N_H_1) & ~no;
234  yes |= (a->d[0] > SECP256K1_N_H_0) & ~no;
235  return yes;
236 }
237 
238 static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
239  /* If we are flag = 0, mask = 00...00 and this is a no-op;
240  * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
241  uint32_t mask = !flag - 1;
242  uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(r) == 0);
243  uint64_t t = (uint64_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask);
244  r->d[0] = t & nonzero; t >>= 32;
245  t += (uint64_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask);
246  r->d[1] = t & nonzero; t >>= 32;
247  t += (uint64_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask);
248  r->d[2] = t & nonzero; t >>= 32;
249  t += (uint64_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask);
250  r->d[3] = t & nonzero; t >>= 32;
251  t += (uint64_t)(r->d[4] ^ mask) + (SECP256K1_N_4 & mask);
252  r->d[4] = t & nonzero; t >>= 32;
253  t += (uint64_t)(r->d[5] ^ mask) + (SECP256K1_N_5 & mask);
254  r->d[5] = t & nonzero; t >>= 32;
255  t += (uint64_t)(r->d[6] ^ mask) + (SECP256K1_N_6 & mask);
256  r->d[6] = t & nonzero; t >>= 32;
257  t += (uint64_t)(r->d[7] ^ mask) + (SECP256K1_N_7 & mask);
258  r->d[7] = t & nonzero;
259  return 2 * (mask == 0) - 1;
260 }
261 
262 
263 /* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */
264 
266 #define muladd(a,b) { \
267  uint32_t tl, th; \
268  { \
269  uint64_t t = (uint64_t)a * b; \
270  th = t >> 32; /* at most 0xFFFFFFFE */ \
271  tl = t; \
272  } \
273  c0 += tl; /* overflow is handled on the next line */ \
274  th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \
275  c1 += th; /* overflow is handled on the next line */ \
276  c2 += (c1 < th) ? 1 : 0; /* never overflows by contract (verified in the next line) */ \
277  VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
278 }
279 
281 #define muladd_fast(a,b) { \
282  uint32_t tl, th; \
283  { \
284  uint64_t t = (uint64_t)a * b; \
285  th = t >> 32; /* at most 0xFFFFFFFE */ \
286  tl = t; \
287  } \
288  c0 += tl; /* overflow is handled on the next line */ \
289  th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \
290  c1 += th; /* never overflows by contract (verified in the next line) */ \
291  VERIFY_CHECK(c1 >= th); \
292 }
293 
295 #define muladd2(a,b) { \
296  uint32_t tl, th, th2, tl2; \
297  { \
298  uint64_t t = (uint64_t)a * b; \
299  th = t >> 32; /* at most 0xFFFFFFFE */ \
300  tl = t; \
301  } \
302  th2 = th + th; /* at most 0xFFFFFFFE (in case th was 0x7FFFFFFF) */ \
303  c2 += (th2 < th) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
304  VERIFY_CHECK((th2 >= th) || (c2 != 0)); \
305  tl2 = tl + tl; /* at most 0xFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFF) */ \
306  th2 += (tl2 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \
307  c0 += tl2; /* overflow is handled on the next line */ \
308  th2 += (c0 < tl2) ? 1 : 0; /* second overflow is handled on the next line */ \
309  c2 += (c0 < tl2) & (th2 == 0); /* never overflows by contract (verified the next line) */ \
310  VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \
311  c1 += th2; /* overflow is handled on the next line */ \
312  c2 += (c1 < th2) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
313  VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \
314 }
315 
317 #define sumadd(a) { \
318  unsigned int over; \
319  c0 += (a); /* overflow is handled on the next line */ \
320  over = (c0 < (a)) ? 1 : 0; \
321  c1 += over; /* overflow is handled on the next line */ \
322  c2 += (c1 < over) ? 1 : 0; /* never overflows by contract */ \
323 }
324 
326 #define sumadd_fast(a) { \
327  c0 += (a); /* overflow is handled on the next line */ \
328  c1 += (c0 < (a)) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
329  VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
330  VERIFY_CHECK(c2 == 0); \
331 }
332 
334 #define extract(n) { \
335  (n) = c0; \
336  c0 = c1; \
337  c1 = c2; \
338  c2 = 0; \
339 }
340 
342 #define extract_fast(n) { \
343  (n) = c0; \
344  c0 = c1; \
345  c1 = 0; \
346  VERIFY_CHECK(c2 == 0); \
347 }
348 
349 static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint32_t *l) {
350  uint64_t c;
351  uint32_t n0 = l[8], n1 = l[9], n2 = l[10], n3 = l[11], n4 = l[12], n5 = l[13], n6 = l[14], n7 = l[15];
352  uint32_t m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12;
353  uint32_t p0, p1, p2, p3, p4, p5, p6, p7, p8;
354 
355  /* 96 bit accumulator. */
356  uint32_t c0, c1, c2;
357 
358  /* Reduce 512 bits into 385. */
359  /* m[0..12] = l[0..7] + n[0..7] * SECP256K1_N_C. */
360  c0 = l[0]; c1 = 0; c2 = 0;
362  extract_fast(m0);
363  sumadd_fast(l[1]);
364  muladd(n1, SECP256K1_N_C_0);
365  muladd(n0, SECP256K1_N_C_1);
366  extract(m1);
367  sumadd(l[2]);
368  muladd(n2, SECP256K1_N_C_0);
369  muladd(n1, SECP256K1_N_C_1);
370  muladd(n0, SECP256K1_N_C_2);
371  extract(m2);
372  sumadd(l[3]);
373  muladd(n3, SECP256K1_N_C_0);
374  muladd(n2, SECP256K1_N_C_1);
375  muladd(n1, SECP256K1_N_C_2);
376  muladd(n0, SECP256K1_N_C_3);
377  extract(m3);
378  sumadd(l[4]);
379  muladd(n4, SECP256K1_N_C_0);
380  muladd(n3, SECP256K1_N_C_1);
381  muladd(n2, SECP256K1_N_C_2);
382  muladd(n1, SECP256K1_N_C_3);
383  sumadd(n0);
384  extract(m4);
385  sumadd(l[5]);
386  muladd(n5, SECP256K1_N_C_0);
387  muladd(n4, SECP256K1_N_C_1);
388  muladd(n3, SECP256K1_N_C_2);
389  muladd(n2, SECP256K1_N_C_3);
390  sumadd(n1);
391  extract(m5);
392  sumadd(l[6]);
393  muladd(n6, SECP256K1_N_C_0);
394  muladd(n5, SECP256K1_N_C_1);
395  muladd(n4, SECP256K1_N_C_2);
396  muladd(n3, SECP256K1_N_C_3);
397  sumadd(n2);
398  extract(m6);
399  sumadd(l[7]);
400  muladd(n7, SECP256K1_N_C_0);
401  muladd(n6, SECP256K1_N_C_1);
402  muladd(n5, SECP256K1_N_C_2);
403  muladd(n4, SECP256K1_N_C_3);
404  sumadd(n3);
405  extract(m7);
406  muladd(n7, SECP256K1_N_C_1);
407  muladd(n6, SECP256K1_N_C_2);
408  muladd(n5, SECP256K1_N_C_3);
409  sumadd(n4);
410  extract(m8);
411  muladd(n7, SECP256K1_N_C_2);
412  muladd(n6, SECP256K1_N_C_3);
413  sumadd(n5);
414  extract(m9);
415  muladd(n7, SECP256K1_N_C_3);
416  sumadd(n6);
417  extract(m10);
418  sumadd_fast(n7);
419  extract_fast(m11);
420  VERIFY_CHECK(c0 <= 1);
421  m12 = c0;
422 
423  /* Reduce 385 bits into 258. */
424  /* p[0..8] = m[0..7] + m[8..12] * SECP256K1_N_C. */
425  c0 = m0; c1 = 0; c2 = 0;
427  extract_fast(p0);
428  sumadd_fast(m1);
429  muladd(m9, SECP256K1_N_C_0);
430  muladd(m8, SECP256K1_N_C_1);
431  extract(p1);
432  sumadd(m2);
433  muladd(m10, SECP256K1_N_C_0);
434  muladd(m9, SECP256K1_N_C_1);
435  muladd(m8, SECP256K1_N_C_2);
436  extract(p2);
437  sumadd(m3);
438  muladd(m11, SECP256K1_N_C_0);
439  muladd(m10, SECP256K1_N_C_1);
440  muladd(m9, SECP256K1_N_C_2);
441  muladd(m8, SECP256K1_N_C_3);
442  extract(p3);
443  sumadd(m4);
444  muladd(m12, SECP256K1_N_C_0);
445  muladd(m11, SECP256K1_N_C_1);
446  muladd(m10, SECP256K1_N_C_2);
447  muladd(m9, SECP256K1_N_C_3);
448  sumadd(m8);
449  extract(p4);
450  sumadd(m5);
451  muladd(m12, SECP256K1_N_C_1);
452  muladd(m11, SECP256K1_N_C_2);
453  muladd(m10, SECP256K1_N_C_3);
454  sumadd(m9);
455  extract(p5);
456  sumadd(m6);
457  muladd(m12, SECP256K1_N_C_2);
458  muladd(m11, SECP256K1_N_C_3);
459  sumadd(m10);
460  extract(p6);
461  sumadd_fast(m7);
463  sumadd_fast(m11);
464  extract_fast(p7);
465  p8 = c0 + m12;
466  VERIFY_CHECK(p8 <= 2);
467 
468  /* Reduce 258 bits into 256. */
469  /* r[0..7] = p[0..7] + p[8] * SECP256K1_N_C. */
470  c = p0 + (uint64_t)SECP256K1_N_C_0 * p8;
471  r->d[0] = c & 0xFFFFFFFFUL; c >>= 32;
472  c += p1 + (uint64_t)SECP256K1_N_C_1 * p8;
473  r->d[1] = c & 0xFFFFFFFFUL; c >>= 32;
474  c += p2 + (uint64_t)SECP256K1_N_C_2 * p8;
475  r->d[2] = c & 0xFFFFFFFFUL; c >>= 32;
476  c += p3 + (uint64_t)SECP256K1_N_C_3 * p8;
477  r->d[3] = c & 0xFFFFFFFFUL; c >>= 32;
478  c += p4 + (uint64_t)p8;
479  r->d[4] = c & 0xFFFFFFFFUL; c >>= 32;
480  c += p5;
481  r->d[5] = c & 0xFFFFFFFFUL; c >>= 32;
482  c += p6;
483  r->d[6] = c & 0xFFFFFFFFUL; c >>= 32;
484  c += p7;
485  r->d[7] = c & 0xFFFFFFFFUL; c >>= 32;
486 
487  /* Final reduction of r. */
488  secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
489 }
490 
491 static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, const secp256k1_scalar *b) {
492  /* 96 bit accumulator. */
493  uint32_t c0 = 0, c1 = 0, c2 = 0;
494 
495  /* l[0..15] = a[0..7] * b[0..7]. */
496  muladd_fast(a->d[0], b->d[0]);
497  extract_fast(l[0]);
498  muladd(a->d[0], b->d[1]);
499  muladd(a->d[1], b->d[0]);
500  extract(l[1]);
501  muladd(a->d[0], b->d[2]);
502  muladd(a->d[1], b->d[1]);
503  muladd(a->d[2], b->d[0]);
504  extract(l[2]);
505  muladd(a->d[0], b->d[3]);
506  muladd(a->d[1], b->d[2]);
507  muladd(a->d[2], b->d[1]);
508  muladd(a->d[3], b->d[0]);
509  extract(l[3]);
510  muladd(a->d[0], b->d[4]);
511  muladd(a->d[1], b->d[3]);
512  muladd(a->d[2], b->d[2]);
513  muladd(a->d[3], b->d[1]);
514  muladd(a->d[4], b->d[0]);
515  extract(l[4]);
516  muladd(a->d[0], b->d[5]);
517  muladd(a->d[1], b->d[4]);
518  muladd(a->d[2], b->d[3]);
519  muladd(a->d[3], b->d[2]);
520  muladd(a->d[4], b->d[1]);
521  muladd(a->d[5], b->d[0]);
522  extract(l[5]);
523  muladd(a->d[0], b->d[6]);
524  muladd(a->d[1], b->d[5]);
525  muladd(a->d[2], b->d[4]);
526  muladd(a->d[3], b->d[3]);
527  muladd(a->d[4], b->d[2]);
528  muladd(a->d[5], b->d[1]);
529  muladd(a->d[6], b->d[0]);
530  extract(l[6]);
531  muladd(a->d[0], b->d[7]);
532  muladd(a->d[1], b->d[6]);
533  muladd(a->d[2], b->d[5]);
534  muladd(a->d[3], b->d[4]);
535  muladd(a->d[4], b->d[3]);
536  muladd(a->d[5], b->d[2]);
537  muladd(a->d[6], b->d[1]);
538  muladd(a->d[7], b->d[0]);
539  extract(l[7]);
540  muladd(a->d[1], b->d[7]);
541  muladd(a->d[2], b->d[6]);
542  muladd(a->d[3], b->d[5]);
543  muladd(a->d[4], b->d[4]);
544  muladd(a->d[5], b->d[3]);
545  muladd(a->d[6], b->d[2]);
546  muladd(a->d[7], b->d[1]);
547  extract(l[8]);
548  muladd(a->d[2], b->d[7]);
549  muladd(a->d[3], b->d[6]);
550  muladd(a->d[4], b->d[5]);
551  muladd(a->d[5], b->d[4]);
552  muladd(a->d[6], b->d[3]);
553  muladd(a->d[7], b->d[2]);
554  extract(l[9]);
555  muladd(a->d[3], b->d[7]);
556  muladd(a->d[4], b->d[6]);
557  muladd(a->d[5], b->d[5]);
558  muladd(a->d[6], b->d[4]);
559  muladd(a->d[7], b->d[3]);
560  extract(l[10]);
561  muladd(a->d[4], b->d[7]);
562  muladd(a->d[5], b->d[6]);
563  muladd(a->d[6], b->d[5]);
564  muladd(a->d[7], b->d[4]);
565  extract(l[11]);
566  muladd(a->d[5], b->d[7]);
567  muladd(a->d[6], b->d[6]);
568  muladd(a->d[7], b->d[5]);
569  extract(l[12]);
570  muladd(a->d[6], b->d[7]);
571  muladd(a->d[7], b->d[6]);
572  extract(l[13]);
573  muladd_fast(a->d[7], b->d[7]);
574  extract_fast(l[14]);
575  VERIFY_CHECK(c1 == 0);
576  l[15] = c0;
577 }
578 
579 static void secp256k1_scalar_sqr_512(uint32_t *l, const secp256k1_scalar *a) {
580  /* 96 bit accumulator. */
581  uint32_t c0 = 0, c1 = 0, c2 = 0;
582 
583  /* l[0..15] = a[0..7]^2. */
584  muladd_fast(a->d[0], a->d[0]);
585  extract_fast(l[0]);
586  muladd2(a->d[0], a->d[1]);
587  extract(l[1]);
588  muladd2(a->d[0], a->d[2]);
589  muladd(a->d[1], a->d[1]);
590  extract(l[2]);
591  muladd2(a->d[0], a->d[3]);
592  muladd2(a->d[1], a->d[2]);
593  extract(l[3]);
594  muladd2(a->d[0], a->d[4]);
595  muladd2(a->d[1], a->d[3]);
596  muladd(a->d[2], a->d[2]);
597  extract(l[4]);
598  muladd2(a->d[0], a->d[5]);
599  muladd2(a->d[1], a->d[4]);
600  muladd2(a->d[2], a->d[3]);
601  extract(l[5]);
602  muladd2(a->d[0], a->d[6]);
603  muladd2(a->d[1], a->d[5]);
604  muladd2(a->d[2], a->d[4]);
605  muladd(a->d[3], a->d[3]);
606  extract(l[6]);
607  muladd2(a->d[0], a->d[7]);
608  muladd2(a->d[1], a->d[6]);
609  muladd2(a->d[2], a->d[5]);
610  muladd2(a->d[3], a->d[4]);
611  extract(l[7]);
612  muladd2(a->d[1], a->d[7]);
613  muladd2(a->d[2], a->d[6]);
614  muladd2(a->d[3], a->d[5]);
615  muladd(a->d[4], a->d[4]);
616  extract(l[8]);
617  muladd2(a->d[2], a->d[7]);
618  muladd2(a->d[3], a->d[6]);
619  muladd2(a->d[4], a->d[5]);
620  extract(l[9]);
621  muladd2(a->d[3], a->d[7]);
622  muladd2(a->d[4], a->d[6]);
623  muladd(a->d[5], a->d[5]);
624  extract(l[10]);
625  muladd2(a->d[4], a->d[7]);
626  muladd2(a->d[5], a->d[6]);
627  extract(l[11]);
628  muladd2(a->d[5], a->d[7]);
629  muladd(a->d[6], a->d[6]);
630  extract(l[12]);
631  muladd2(a->d[6], a->d[7]);
632  extract(l[13]);
633  muladd_fast(a->d[7], a->d[7]);
634  extract_fast(l[14]);
635  VERIFY_CHECK(c1 == 0);
636  l[15] = c0;
637 }
638 
639 #undef sumadd
640 #undef sumadd_fast
641 #undef muladd
642 #undef muladd_fast
643 #undef muladd2
644 #undef extract
645 #undef extract_fast
646 
647 static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
648  uint32_t l[16];
649  secp256k1_scalar_mul_512(l, a, b);
650  secp256k1_scalar_reduce_512(r, l);
651 }
652 
653 static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
654  int ret;
655  VERIFY_CHECK(n > 0);
656  VERIFY_CHECK(n < 16);
657  ret = r->d[0] & ((1 << n) - 1);
658  r->d[0] = (r->d[0] >> n) + (r->d[1] << (32 - n));
659  r->d[1] = (r->d[1] >> n) + (r->d[2] << (32 - n));
660  r->d[2] = (r->d[2] >> n) + (r->d[3] << (32 - n));
661  r->d[3] = (r->d[3] >> n) + (r->d[4] << (32 - n));
662  r->d[4] = (r->d[4] >> n) + (r->d[5] << (32 - n));
663  r->d[5] = (r->d[5] >> n) + (r->d[6] << (32 - n));
664  r->d[6] = (r->d[6] >> n) + (r->d[7] << (32 - n));
665  r->d[7] = (r->d[7] >> n);
666  return ret;
667 }
668 
669 static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) {
670  uint32_t l[16];
671  secp256k1_scalar_sqr_512(l, a);
672  secp256k1_scalar_reduce_512(r, l);
673 }
674 
675 #ifdef USE_ENDOMORPHISM
676 static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
677  r1->d[0] = a->d[0];
678  r1->d[1] = a->d[1];
679  r1->d[2] = a->d[2];
680  r1->d[3] = a->d[3];
681  r1->d[4] = 0;
682  r1->d[5] = 0;
683  r1->d[6] = 0;
684  r1->d[7] = 0;
685  r2->d[0] = a->d[4];
686  r2->d[1] = a->d[5];
687  r2->d[2] = a->d[6];
688  r2->d[3] = a->d[7];
689  r2->d[4] = 0;
690  r2->d[5] = 0;
691  r2->d[6] = 0;
692  r2->d[7] = 0;
693 }
694 #endif
695 
696 SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
697  return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3]) | (a->d[4] ^ b->d[4]) | (a->d[5] ^ b->d[5]) | (a->d[6] ^ b->d[6]) | (a->d[7] ^ b->d[7])) == 0;
698 }
699 
700 SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) {
701  uint32_t l[16];
702  unsigned int shiftlimbs;
703  unsigned int shiftlow;
704  unsigned int shifthigh;
705  VERIFY_CHECK(shift >= 256);
706  secp256k1_scalar_mul_512(l, a, b);
707  shiftlimbs = shift >> 5;
708  shiftlow = shift & 0x1F;
709  shifthigh = 32 - shiftlow;
710  r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 480 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
711  r->d[1] = shift < 480 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
712  r->d[2] = shift < 448 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 416 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
713  r->d[3] = shift < 416 ? (l[3 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[4 + shiftlimbs] << shifthigh) : 0)) : 0;
714  r->d[4] = shift < 384 ? (l[4 + shiftlimbs] >> shiftlow | (shift < 352 && shiftlow ? (l[5 + shiftlimbs] << shifthigh) : 0)) : 0;
715  r->d[5] = shift < 352 ? (l[5 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[6 + shiftlimbs] << shifthigh) : 0)) : 0;
716  r->d[6] = shift < 320 ? (l[6 + shiftlimbs] >> shiftlow | (shift < 288 && shiftlow ? (l[7 + shiftlimbs] << shifthigh) : 0)) : 0;
717  r->d[7] = shift < 288 ? (l[7 + shiftlimbs] >> shiftlow) : 0;
718  secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 5] >> ((shift - 1) & 0x1f)) & 1);
719 }
720 
721 #endif /* SECP256K1_SCALAR_REPR_IMPL_H */
#define VERIFY_CHECK(cond)
Definition: util.h:67
#define muladd2(a, b)
Add 2*a*b to the number defined by (c0,c1,c2).
#define SECP256K1_N_2
#define SECP256K1_N_6
#define SECP256K1_N_H_1
#define SECP256K1_N_7
size_t count
Definition: ExecStats.cpp:37
#define SECP256K1_N_H_4
#define c(i)
#define SECP256K1_N_0
#define sumadd_fast(a)
Add a to the number defined by (c0,c1).
#define SECP256K1_N_H_5
#define SECP256K1_N_C_1
#define SECP256K1_N_5
#define a(i)
#define sumadd(a)
Add a to the number defined by (c0,c1,c2).
#define r1(i)
#define SECP256K1_INLINE
Definition: secp256k1.h:110
#define SECP256K1_N_C_4
#define r2(i)
#define SECP256K1_N_H_7
#define extract(n)
Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits.
#define SECP256K1_N_3
#define SECP256K1_N_H_2
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
#define b(i, j)
#define muladd_fast(a, b)
Add a*b to the number defined by (c0,c1).
#define SECP256K1_N_4
#define muladd(a, b)
Add a*b to the number defined by (c0,c1,c2).
#define SECP256K1_N_H_3
uint64_t d[4]
Definition: scalar_4x64.h:14
#define UL(i)
#define SECP256K1_N_1
#define SECP256K1_N_H_6
#define SECP256K1_N_H_0
#define SECP256K1_N_C_3
#define SECP256K1_N_C_0
#define extract_fast(n)
Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits.
#define SECP256K1_N_C_2